Simpler Proofs for Approximate Factor Models of Large Dimensions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jushan Bai, Serena Ng

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164954

Estimates of the approximate factor model are increasingly used in empirical work. Their theoretical properties, studied some twenty years ago, also laid the ground work for analysis on large dimensional panel data models with cross-section dependence. This paper presents simplified proofs for the estimates by using alternative rotation matrices, exploiting properties of low rank matrices, as well as the singular value decomposition of the data in addition to its covariance structure. These simplifications facilitate interpretation of results and provide a more friendly introduction to researchers new to the field. New results are provided to allow linear restrictions to be imposed on factor models.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH