Testing error distribution by kernelized Stein discrepancy in multivariate time series models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Huan Gong, Dong Li, Donghang Luo, Ke Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 164964

Knowing the error distribution is important in many multivariate time series applications. To alleviate the risk of error distribution mis-specification, testing methodologies are needed to detect whether the chosen error distribution is correct. However, the majority of the existing tests only deal with the multivariate normal distribution for some special multivariate time series models, and they thus can not be used to testing for the often observed heavy-tailed and skewed error distributions in applications. In this paper, we construct a new consistent test for general multivariate time series models, based on the kernelized Stein discrepancy. To account for the estimation uncertainty and unobserved initial values, a bootstrap method is provided to calculate the critical values. Our new test is easy-to-implement for a large scope of multivariate error distributions, and its importance is illustrated by simulated and real data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH