Distributionally Robust Pricing in Independent Private Value Auctions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alex Suzdaltsev

Ngôn ngữ: eng

Ký hiệu phân loại: 018.3 +Catalogs arranged by author, main entry, date, or register number

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164976

A seller chooses a reserve price in a second-price auction to maximize worst-case expected revenue when she knows only the mean of value distribution and an upper bound on either values themselves or variance. Values are private and iid. Using an indirect technique, we prove that it is always optimal to set the reserve price to the seller's own valuation. However, the maxmin reserve price may not be unique. If the number of bidders is sufficiently high, all prices below the seller's valuation, including zero, are also optimal. A second-price auction with the reserve equal to seller's value (or zero) is an asymptotically optimal mechanism (among all ex post individually rational mechanisms) as the number of bidders grows without bound.Comment: Clarified the setting in Section 5, added discussion, corrected typos, results unchanged
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH