Geometry of anonymous binary social choices that are strategy-proof

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Achille Basile, K. P. S. Bhaskara Rao, Surekha Rao

Ngôn ngữ: eng

Ký hiệu phân loại: 302.13 Social choice

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164983

Comment: JEL Code: D71Let $V$ be society whose members express preferences about two alternatives, indifference included. Identifying anonymous binary social choice functions with binary functions $f=f(k,m)$ defined over the integer triangular grid $G=\{(k,m)\in \mathbb{N}_0\times\mathbb{N}_0 : k+m\le |V|\} $, we show that every strategy-proof, anonymous social choice function can be described geometrically by listing, in a sequential manner, groups of segments of G, of equal (maximum possible) length, alternately horizontal and vertical, representative of preference profiles that determine the collective choice of one of the two alternatives. Indeed, we show that every function which is anonymous and strategy-proof can be described in terms of a sequence of nonnegative integers $(q_1, q_2, \cdots, q_s)$ corresponding to the cardinalities of the mentioned groups of segments. We also analyze the connections between our present representation with another of our earlier representations involving sequences of majority quotas. A Python code is available with the authors for the implementation of any such social choice function.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH