Fibronectin type-II (FnII) proteins are major constituents in the seminal plasma of many mammals and play a crucial role in sperm capacitation. Additionally, the seminal FnII proteins from bull and horse exhibit chaperone-like activity (CLA), by acting as small heat shock proteins (shsps). The present work demonstrates that the major FnII protein of donkey seminal plasma, DSP-1 exhibits CLA with broad specificity and protects various client proteins such as alcohol dehydrogenase, lactate dehydrogenase and enolase against thermal and oxidative stress. Binding of phosphorylcholine (PrC) - the head group moiety of choline phospholipids, which are the physiological ligands of DSP-1 - decreased the CLA whereas binding of 1,2-dioleoyl-sn-glycero-3-phospholcholine (DOPC) increased the CLA. Biophysical studies suggested that these contrasting effects on the CLA by phosphorylcholine and diacyl phosphatidylcholine could be attributed to changes in the surface hydrophobicity of DSP-1 upon binding of these ligands. Interestingly, binding of PrC reduced DSP-1 tetramers to monomers with lower surface hydrophobicity, whereas binding to DOPC liposomes increased its surface hydrophobicity. These results, which demonstrate that DSP-1 exhibits CLA and functions as a molecular chaperone, expand the family of mammalian seminal FnII proteins that can function as shsps.