Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Florian Huber, Gary Koop, Luca Onorante, Michael Pfarrhofer, Josef Schreiner

Ngôn ngữ: eng

Ký hiệu phân loại: 614.472 Forensic medicine; incidence of injuries, wounds, disease; public preventive medicine

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165099

 Comment: JEL: C11, C32, C53, E37
  Keywords: Regression tree models, Bayesian, macroeconomic forecasting, vector autoregressionsThis paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced by the COVID-19 pandemic of 2020. This is due to their flexibility and ability to model outliers. In an application involving four major euro area countries, we find substantial improvements in nowcasting performance relative to a linear mixed frequency VAR.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH