COVID-19: Tail Risk and Predictive Regressions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Walter Distaso, Rustam Ibragimov, Alexander Semenov, Anton Skrobotov

Ngôn ngữ: eng

Ký hiệu phân loại: 362.1962414 Physical illness

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165144

The paper focuses on econometrically justified robust analysis of the effects of the COVID-19 pandemic on financial markets in different countries across the World. It provides the results of robust estimation and inference on predictive regressions for returns on major stock indexes in 23 countries in North and South America, Europe, and Asia incorporating the time series of reported infections and deaths from COVID-19. We also present a detailed study of persistence, heavy-tailedness and tail risk properties of the time series of the COVID-19 infections and death rates that motivate the necessity in applications of robust inference methods in the analysis. Econometrically justified analysis is based on heteroskedasticity and autocorrelation consistent (HAC) inference methods, recently developed robust $t$-statistic inference approaches and robust tail index estimation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH