Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David T Frazier, D. S Poskitt, Lina Zhang, Xueyan Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165146

This paper examines the identification power of instrumental variables (IVs) for average treatment effect (ATE) in partially identified models. We decompose the ATE identification gains into components of contributions driven by IV relevancy, IV strength, direction and degree of treatment endogeneity, and matching via exogenous covariates. Our decomposition is demonstrated with graphical illustrations, simulation studies and an empirical example of childbearing and women's labour supply. Our analysis offers insights for understanding the complex role of IVs in ATE identification and for selecting IVs in practical policy designs. Simulations also suggest potential uses of our analysis for detecting irrelevant instruments.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH