Spatial Differencing for Sample Selection Models with Unobserved Heterogeneity

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alexander Klein, Guy Tchuente

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165207

This paper derives identification, estimation, and inference results using spatial differencing in sample selection models with unobserved heterogeneity. We show that under the assumption of smooth changes across space of the unobserved sub-location specific heterogeneities and inverse Mills ratio, key parameters of a sample selection model are identified. The smoothness of the sub-location specific heterogeneities implies a correlation in the outcomes. We assume that the correlation is restricted within a location or cluster and derive asymptotic results showing that as the number of independent clusters increases, the estimators are consistent and asymptotically normal. We also propose a formula for standard error estimation. A Monte-Carlo experiment illustrates the small sample properties of our estimator. The application of our procedure to estimate the determinants of the municipality tax rate in Finland shows the importance of accounting for unobserved heterogeneity.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH