Social Learning in Nonatomic Routing Games

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Emilien Macault, Marco Scarsini, Tristan Tomala

Ngôn ngữ: eng

Ký hiệu phân loại: 519.3 Game theory

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165253

Comment: 20 pages, 4 figuresWe consider a discrete-time nonatomic routing game with variable demand and uncertain costs. Given a routing network with single origin and destination, the cost function of each edge depends on some uncertain persistent state parameter. At every period, a random traffic demand is routed through the network according to a Wardrop equilibrium. The realized costs are publicly observed and the public Bayesian belief about the state parameter is updated. We say that there is strong learning when beliefs converge to the truth and weak learning when the equilibrium flow converges to the complete-information flow. We characterize the networks for which learning occurs. We prove that these networks have a series-parallel structure and provide a counterexample to show that learning may fail in non-series-parallel networks.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH