Nonclassical Measurement Error in the Outcome Variable

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Christoph Breunig, Stephan Martin

Ngôn ngữ: eng

Ký hiệu phân loại: 001.96 Errors, delusions, superstitions

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165261

We study a semi-/nonparametric regression model with a general form of nonclassical measurement error in the outcome variable. We show equivalence of this model to a generalized regression model. Our main identifying assumptions are a special regressor type restriction and monotonicity in the nonlinear relationship between the observed and unobserved true outcome. Nonparametric identification is then obtained under a normalization of the unknown link function, which is a natural extension of the classical measurement error case. We propose a novel sieve rank estimator for the regression function and establish its rate of convergence. In Monte Carlo simulations, we find that our estimator corrects for biases induced by nonclassical measurement error and provides numerically stable results. We apply our method to analyze belief formation of stock market expectations with survey data from the German Socio-Economic Panel (SOEP) and find evidence for nonclassical measurement error in subjective belief data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH