On the Continuity of the Feasible Set Mapping in Optimal Transport

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mario Ghossoub, David Saunders

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165262

Consider the set of probability measures with given marginal distributions on the product of two complete, separable metric spaces, seen as a correspondence when the marginal distributions vary. In problems of optimal transport, continuity of this correspondence from marginal to joint distributions is often desired, in light of Berge's Maximum Theorem, to establish continuity of the value function in the marginal distributions, as well as stability of the set of optimal transport plans. Bergin (1999) established the continuity of this correspondence, and in this note, we present a novel and considerably shorter proof of this important result. We then examine an application to an assignment game (transferable utility matching problem) with unknown type distributions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH