A Computational Approach to Identification of Treatment Effects for Policy Evaluation

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sukjin Han, Shenshen Yang

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165284

For counterfactual policy evaluation, it is important to ensure that treatment parameters are relevant to policies in question. This is especially challenging under unobserved heterogeneity, as is well featured in the definition of the local average treatment effect (LATE). Being intrinsically local, the LATE is known to lack external validity in counterfactual environments. This paper investigates the possibility of extrapolating local treatment effects to different counterfactual settings when instrumental variables are only binary. We propose a novel framework to systematically calculate sharp nonparametric bounds on various policy-relevant treatment parameters that are defined as weighted averages of the marginal treatment effect (MTE). Our framework is flexible enough to fully incorporate statistical independence (rather than mean independence) of instruments and a large menu of identifying assumptions beyond the shape restrictions on the MTE that have been considered in prior studies. We apply our method to understand the effects of medical insurance policies on the use of medical services.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH