On Statistical Discrimination as a Failure of Social Learning: A Multi-Armed Bandit Approach

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Junpei Komiyama, Shunya Noda

Ngôn ngữ: eng

Ký hiệu phân loại: 320.561 Political science (Politics and government)

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 165297

 Comment: 1st round of revision (management science)We analyze statistical discrimination in hiring markets using a multi-armed bandit model. Myopic firms face workers arriving with heterogeneous observable characteristics. The association between the worker's skill and characteristics is unknown ex ante
  thus, firms need to learn it. Laissez-faire causes perpetual underestimation: minority workers are rarely hired, and therefore, the underestimation tends to persist. Even a marginal imbalance in the population ratio frequently results in perpetual underestimation. We propose two policy solutions: a novel subsidy rule (the hybrid mechanism) and the Rooney Rule. Our results indicate that temporary affirmative actions effectively alleviate discrimination stemming from insufficient data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH