We study efficiency improvements in randomized experiments for estimating a vector of potential outcome means using regression adjustment (RA) when there are more than two treatment levels. We show that linear RA which estimates separate slopes for each assignment level is never worse, asymptotically, than using the subsample averages. We also show that separate RA improves over pooled RA except in the obvious case where slope parameters in the linear projections are identical across the different assignment levels. We further characterize the class of nonlinear RA methods that preserve consistency of the potential outcome means despite arbitrary misspecification of the conditional mean functions. Finally, we apply these regression adjustment techniques to efficiently estimate the lower bound mean willingness to pay for an oil spill prevention program in California.