Low-Rank Approximations of Nonseparable Panel Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Iván Fernández-Val, Hugo Freeman, Martin Weidner

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165447

We provide estimation methods for nonseparable panel models based on low-rank factor structure approximations. The factor structures are estimated by matrix-completion methods to deal with the computational challenges of principal component analysis in the presence of missing data. We show that the resulting estimators are consistent in large panels, but suffer from approximation and shrinkage biases. We correct these biases using matching and difference-in-differences approaches. Numerical examples and an empirical application to the effect of election day registration on voter turnout in the U.S. illustrate the properties and usefulness of our methods.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH