A Systematic Comparison of Forecasting for Gross Domestic Product in an Emergent Economy

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Josiane da Silva Cordeiro Coelho, Kleyton da Costa, Felipe Leite Coelho da Silva, André de Melo Modenesi

Ngôn ngữ: eng

Ký hiệu phân loại: 338.9 Economic development and growth

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165451

 Comment: 22 pages, 11 figuresGross domestic product (GDP) is an important economic indicator that aggregates useful information to assist economic agents and policymakers in their decision-making process. In this context, GDP forecasting becomes a powerful decision optimization tool in several areas. In order to contribute in this direction, we investigated the efficiency of classical time series models, the state-space models, and the neural network models, applied to Brazilian gross domestic product. The models used were: a Seasonal Autoregressive Integrated Moving Average (SARIMA) and a Holt-Winters method, which are classical time series models
  the dynamic linear model, a state-space model
  and neural network autoregression and the multilayer perceptron, artificial neural network models. Based on statistical metrics of model comparison, the multilayer perceptron presented the best in-sample and out-sample forecasting performance for the analyzed period, also incorporating the growth rate structure significantly.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH