Estimating County-Level COVID-19 Exponential Growth Rates Using Generalized Random Forests

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Turgay Ayer, Jagpreet Chhatwal, Zhaowei She, Asmae Toumi, Zilong Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 165517

Comment: Machine Learning for Health (ML4H) at NeurIPS 2020 - Extended AbstractRapid and accurate detection of community outbreaks is critical to address the threat of resurgent waves of COVID-19. A practical challenge in outbreak detection is balancing accuracy vs. speed. In particular, while estimation accuracy improves with longer fitting windows, speed degrades. This paper presents a machine learning framework to balance this tradeoff using generalized random forests (GRF), and applies it to detect county level COVID-19 outbreaks. This algorithm chooses an adaptive fitting window size for each county based on relevant features affecting the disease spread, such as changes in social distancing policies. Experiment results show that our method outperforms any non-adaptive window size choices in 7-day ahead COVID-19 outbreak case number predictions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH