Learning from Forecast Errors: A New Approach to Forecast Combinations

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tae-Hwy Lee, Ekaterina Seregina

Ngôn ngữ: eng

Ký hiệu phân loại: 551.63 Weather forecasting and forecasts, reporting and reports

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165523

Comment: 41 pages, 14 figures, 1 tableForecasters often use common information and hence make common mistakes. We propose a new approach, Factor Graphical Model (FGM), to forecast combinations that separates idiosyncratic forecast errors from the common errors. FGM exploits the factor structure of forecast errors and the sparsity of the precision matrix of the idiosyncratic errors. We prove the consistency of forecast combination weights and mean squared forecast error estimated using FGM, supporting the results with extensive simulations. Empirical applications to forecasting macroeconomic series shows that forecast combination using FGM outperforms combined forecasts using equal weights and graphical models without incorporating factor structure of forecast errors.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH