Debiasing classifiers: is reality at variance with expectation?

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ashrya Agrawal, Bernd Bischl, Francois Buet-Golfouse, Jiahao Chen, Florian Pfisterer, Sameena Shah, Srijan Sood, Sebastian Vollmer

Ngôn ngữ: eng

Ký hiệu phân loại: 809.383 History, description, critical appraisal of more than two literatures

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165529

Comment: 13 pages, under reviewWe present an empirical study of debiasing methods for classifiers, showing that debiasers often fail in practice to generalize out-of-sample, and can in fact make fairness worse rather than better. A rigorous evaluation of the debiasing treatment effect requires extensive cross-validation beyond what is usually done. We demonstrate that this phenomenon can be explained as a consequence of bias-variance trade-off, with an increase in variance necessitated by imposing a fairness constraint. Follow-up experiments validate the theoretical prediction that the estimation variance depends strongly on the base rates of the protected class. Considering fairness--performance trade-offs justifies the counterintuitive notion that partial debiasing can actually yield better results in practice on out-of-sample data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH