Sparse time-varying parameter VECMs with an application to modeling electricity prices

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Niko Hauzenberger, Michael Pfarrhofer, Luca Rossini

Ngôn ngữ: eng

Ký hiệu phân loại: 003.78 Distributed-parameter systems

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165565

 Comment: JEL: C11, C32, C53, Q40
  Keywords: Cointegration, reduced rank regression, sparsification, hierarchical shrinkage priors, error correction modelsIn this paper we propose a time-varying parameter (TVP) vector error correction model (VECM) with heteroskedastic disturbances. We propose tools to carry out dynamic model specification in an automatic fashion. This involves using global-local priors, and postprocessing the parameters to achieve truly sparse solutions. Depending on the respective set of coefficients, we achieve this via minimizing auxiliary loss functions. Our two-step approach limits overfitting and reduces parameter estimation uncertainty. We apply this framework to modeling European electricity prices. When considering daily electricity prices for different markets jointly, our model highlights the importance of explicitly addressing cointegration and nonlinearities. In a forecast exercise focusing on hourly prices for Germany, our approach yields competitive metrics of predictive accuracy.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH