Population synthesis for urban resident modeling using deep generative models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Oliver Brandt, Sergio Garrido, Martin Johnsen, Francisco C Pereira

Ngôn ngữ: eng

Ký hiệu phân loại: 307.76 Urban communities

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165601

The impacts of new real estate developments are strongly associated to its population distribution (types and compositions of households, incomes, social demographics) conditioned on aspects such as dwelling typology, price, location, and floor level. This paper presents a Machine Learning based method to model the population distribution of upcoming developments of new buildings within larger neighborhood/condo settings. We use a real data set from Ecopark Township, a real estate development project in Hanoi, Vietnam, where we study two machine learning algorithms from the deep generative models literature to create a population of synthetic agents: Conditional Variational Auto-Encoder (CVAE) and Conditional Generative Adversarial Networks (CGAN). A large experimental study was performed, showing that the CVAE outperforms both the empirical distribution, a non-trivial baseline model, and the CGAN in estimating the population distribution of new real estate development projects.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH