Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Oren Barkan, Jonathan Benchimol, Itamar Caspi, Eliya Cohen, Allon Hammer, Noam Koenigstein

Ngôn ngữ: eng

Ký hiệu phân loại: 006.32 Neural nets (Neural networks)

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165622

We present a hierarchical architecture based on Recurrent Neural Networks (RNNs) for predicting disaggregated inflation components of the Consumer Price Index (CPI). While the majority of existing research is focused mainly on predicting the inflation headline, many economic and financial entities are more interested in its partial disaggregated components. To this end, we developed the novel Hierarchical Recurrent Neural Network (HRNN) model that utilizes information from higher levels in the CPI hierarchy to improve predictions at the more volatile lower levels. Our evaluations, based on a large data-set from the US CPI-U index, indicate that the HRNN model significantly outperforms a vast array of well-known inflation prediction baselines.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH