Welfare Analysis via Marginal Treatment Effects

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yuya Sasaki, Takuya Ura

Ngôn ngữ: eng

Ký hiệu phân loại: 330.1556 Systems, schools, theories

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165793

Consider a causal structure with endogeneity (i.e., unobserved confoundedness) in empirical data, where an instrumental variable is available. In this setting, we show that the mean social welfare function can be identified and represented via the marginal treatment effect (MTE, Bjorklund and Moffitt, 1987) as the operator kernel. This representation result can be applied to a variety of statistical decision rules for treatment choice, including plug-in rules, Bayes rules, and empirical welfare maximization (EWM) rules as in Hirano and Porter (2020, Section 2.3). Focusing on the application to the EWM framework of Kitagawa and Tetenov (2018), we provide convergence rates of the worst case average welfare loss (regret) in the spirit of Manski (2004).
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH