Discordant Relaxations of Misspecified Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Désiré Kédagni, Lixiong Li, Ismaël Mourifié

Ngôn ngữ: eng

Ký hiệu phân loại: 613.792 Relaxation

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165851

In many set-identified models, it is difficult to obtain a tractable characterization of the identified set. Therefore, researchers often rely on non-sharp identification conditions, and empirical results are often based on an outer set of the identified set. This practice is often viewed as conservative yet valid because an outer set is always a superset of the identified set. However, this paper shows that when the model is refuted by the data, two sets of non-sharp identification conditions derived from the same model could lead to disjoint outer sets and conflicting empirical results. We provide a sufficient condition for the existence of such discordancy, which covers models characterized by conditional moment inequalities and the Artstein (1983) inequalities. We also derive sufficient conditions for the non-existence of discordant submodels, therefore providing a class of models for which constructing outer sets cannot lead to misleading interpretations. In the case of discordancy, we follow Masten and Poirier (2021) by developing a method to salvage misspecified models, but unlike them, we focus on discrete relaxations. We consider all minimum relaxations of a refuted model that restores data-consistency. We find that the union of the identified sets of these minimum relaxations is robust to detectable misspecifications and has an intuitive empirical interpretation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH