Quantile regression with generated dependent variable and covariates

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jayeeta Bhattacharya

Ngôn ngữ: eng

Ký hiệu phân loại: 001.43 Historical, descriptive, experimental methods

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165880

We study linear quantile regression models when regressors and/or dependent variable are not directly observed but estimated in an initial first step and used in the second step quantile regression for estimating the quantile parameters. This general class of generated quantile regression (GQR) covers various statistical applications, for instance, estimation of endogenous quantile regression models and triangular structural equation models, and some new relevant applications are discussed. We study the asymptotic distribution of the two-step estimator, which is challenging because of the presence of generated covariates and/or dependent variable in the non-smooth quantile regression estimator. We employ techniques from empirical process theory to find uniform Bahadur expansion for the two step estimator, which is used to establish the asymptotic results. We illustrate the performance of the GQR estimator through simulations and an empirical application based on auctions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH