Measuring Human Adaptation to AI in Decision Making: Application to Evaluate Changes after AlphaGo

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jin Kim, Minkyung Kim, Minkyu Shin

Ngôn ngữ: eng

Ký hiệu phân loại: 155.672 Adaptability and adjustment

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 165911

Across a growing number of domains, human experts are expected to learn from and adapt to AI with superior decision making abilities. But how can we quantify such human adaptation to AI? We develop a simple measure of human adaptation to AI and test its usefulness in two case studies. In Study 1, we analyze 1.3 million move decisions made by professional Go players and find that a positive form of adaptation to AI (learning) occurred after the players could observe the reasoning processes of AI, rather than mere actions of AI. These findings based on our measure highlight the importance of explainability for human learning from AI. In Study 2, we test whether our measure is sufficiently sensitive to capture a negative form of adaptation to AI (cheating aided by AI), which occurred in a match between professional Go players. We discuss our measure's applications in domains other than Go, especially in domains in which AI's decision making ability will likely surpass that of human experts.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH