Adversarial Estimation of Riesz Representers

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Victor Chernozhukov, Whitney Newey, Rahul Singh, Vasilis Syrgkanis

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165921

 Many causal parameters are linear functionals of an underlying regression. The Riesz representer is a key component in the asymptotic variance of a semiparametrically estimated linear functional. We propose an adversarial framework to estimate the Riesz representer using general function spaces. We prove a nonasymptotic mean square rate in terms of an abstract quantity called the critical radius, then specialize it for neural networks, random forests, and reproducing kernel Hilbert spaces as leading cases. Our estimators are highly compatible with targeted and debiased machine learning with sample splitting
  our guarantees directly verify general conditions for inference that allow mis-specification. We also use our guarantees to prove inference without sample splitting, based on stability or complexity. Our estimators achieve nominal coverage in highly nonlinear simulations where some previous methods break down. They shed new light on the heterogeneous effects of matching grants.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH