COVID-19 spreading in financial networks: A semiparametric matrix regression model

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Iacopini Matteo, Costola Michele, Billio Monica, Casarin Roberto

Ngôn ngữ: eng

Ký hiệu phân loại: 362.1962414 Physical illness

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165926

Network models represent a useful tool to describe the complex set of financial relationships among heterogeneous firms in the system. In this paper, we propose a new semiparametric model for temporal multilayer causal networks with both intra- and inter-layer connectivity. A Bayesian model with a hierarchical mixture prior distribution is assumed to capture heterogeneity in the response of the network edges to a set of risk factors including the European COVID-19 cases. We measure the financial connectedness arising from the interactions between two layers defined by stock returns and volatilities. In the empirical analysis, we study the topology of the network before and after the spreading of the COVID-19 disease.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH