Estimation of Tempered Stable L\'{e}vy Models of Infinite Variation

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: José E Figueroa-López, Ruoting Gong, Yuchen Han

Ngôn ngữ: eng

Ký hiệu phân loại: 511.34 Model theory

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165927

Comment: 33 pagesWe propose a new method for the estimation of a semiparametric tempered stable L\'{e}vy model. The estimation procedure combines iteratively an approximate semiparametric method of moment estimator, Truncated Realized Quadratic Variations (TRQV), and a newly found small-time high-order approximation for the optimal threshold of the TRQV of tempered stable processes. The method is tested via simulations to estimate the volatility and the Blumenthal-Getoor index of the generalized CGMY model as well as the integrated volatility of a Heston-type model with CGMY jumps. The method outperforms other efficient alternatives proposed in the literature when working with a L\'evy process (i.e., the volatility is constant), or when the index of jump intensity $Y$ is larger than $3/2$ in the presence of stochastic volatility.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH