Best-response dynamics, playing sequences, and convergence to equilibrium in random games

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Torsten Heinrich, Yoojin Jang, Luca Mungo, Marco Pangallo, Alex Scott, Bassel Tarbush, Samuel Wiese

Ngôn ngữ: eng

Ký hiệu phân loại: 519.3 Game theory

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 165973

Comment: JEL codes: C62, C72, C73, D83 Keywords: Best-response dynamics, equilibrium convergence, random games, learning models in gamesWe analyze the performance of the best-response dynamic across all normal-form games using a random games approach. The playing sequence -- the order in which players update their actions -- is essentially irrelevant in determining whether the dynamic converges to a Nash equilibrium in certain classes of games (e.g. in potential games) but, when evaluated across all possible games, convergence to equilibrium depends on the playing sequence in an extreme way. Our main asymptotic result shows that the best-response dynamic converges to a pure Nash equilibrium in a vanishingly small fraction of all (large) games when players take turns according to a fixed cyclic order. By contrast, when the playing sequence is random, the dynamic converges to a pure Nash equilibrium if one exists in almost all (large) games.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH