Inhibiting post-acidification while preserving viable probiotics in lactic acid bacteria (LAB) fermentation is pivotal to preserving quality and probiotic benefits. In this study, following high-pressure processing (HPP) at 400 and 500 MPa for 600 s, Lactiplantibacillus plantarum entered the viable but non-culturable (VBNC) state. Resuscitation curves, pH levels, acid generation, and glucose metabolism were monitored at 4 °C. VBNC L. plantarum began resuscitation on Day 6 and reached stationary phase by Days 24-27. Glucose metabolism decreased significantly, with no detectable pH drop or acid production, indicating post-acidification was delayed by at least 24 days. Mechanistic insights revealed that post-acidification inhibition was due to HPP-disrupted riboflavin metabolism, related to the cellular respiratory chain and downgraded ATP-depended biosynthesis of NADH, a key coenzyme for lactic acid production. Ultimately, HPP-induced VBNC L. plantarum effectively prevented post-acidification and preserved alive L. plantarum in fermented tomato sauce, verified its ability in real foods.