Explicit non-asymptotic bounds for the distance to the first-order Edgeworth expansion

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alexis Derumigny, Lucas Girard, Yannick Guyonvarch

Ngôn ngữ: eng

Ký hiệu phân loại: 512.74 Algebraic number theory

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 165995

Comment: 51 pages, 2 figuresIn this article, we obtain explicit bounds on the uniform distance between the cumulative distribution function of a standardized sum $S_n$ of $n$ independent centered random variables with moments of order four and its first-order Edgeworth expansion. Those bounds are valid for any sample size with $n^{-1/2}$ rate under moment conditions only and $n^{-1}$ rate under additional regularity constraints on the tail behavior of the characteristic function of $S_n$. In both cases, the bounds are further sharpened if the variables involved in $S_n$ are unskewed. We also derive new Berry-Esseen-type bounds from our results and discuss their links with existing ones. We finally apply our results to illustrate the lack of finite-sample validity of one-sided tests based on the normal approximation of the mean.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH