Machine Learning for Strategic Inference

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: In-Koo Cho, Jonathan Libgober

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166053

We study interactions between strategic players and markets whose behavior is guided by an algorithm. Algorithms use data from prior interactions and a limited set of decision rules to prescribe actions. While as-if rational play need not emerge if the algorithm is constrained, it is possible to guide behavior across a rich set of possible environments using limited details. Provided a condition known as weak learnability holds, Adaptive Boosting algorithms can be specified to induce behavior that is (approximately) as-if rational. Our analysis provides a statistical perspective on the study of endogenous model misspecification.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH