A Bayesian approach for estimation of weight matrices in spatial autoregressive models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tamás Krisztin, Philipp Piribauer

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166099

Comment: Spatial Economic Analysis (2022)We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag) models. Datasets in regional economic literature are typically characterized by a limited number of time periods T relative to spatial units N. When the spatial weight matrix is subject to estimation severe problems of over-parametrization are likely. To make estimation feasible, our approach focusses on spatial weight matrices which are binary prior to row-standardization. We discuss the use of hierarchical priors which impose sparsity in the spatial weight matrix. Monte Carlo simulations show that these priors perform very well where the number of unknown parameters is large relative to the observations. The virtues of our approach are demonstrated using global data from the early phase of the COVID-19 pandemic.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH