Matching in Closed-Form: Equilibrium, Identification, and Comparative Statics

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Raicho Bojilov, Alfred Galichon

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166191

Comment: 30 pagesThis paper provides closed-form formulas for a multidimensional two-sided matching problem with transferable utility and heterogeneity in tastes. When the matching surplus is quadratic, the marginal distributions of the characteristics are normal, and when the heterogeneity in tastes is of the continuous logit type, as in Choo and Siow (J Polit Econ 114:172-201, 2006), we show that the optimal matching distribution is also jointly normal and can be computed in closed form from the model primitives. Conversely, the quadratic surplus function can be identified from the optimal matching distribution, also in closed-form. The closed-form formulas make it computationally easy to solve problems with even a very large number of matches and allow for quantitative predictions about the evolution of the solution as the technology and the characteristics of the matching populations change.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH