Deep Structural Estimation: With an Application to Option Pricing

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hui Chen, Antoine Didisheim, Simon Scheidegger

Ngôn ngữ: eng

Ký hiệu phân loại: 448.2 Standard French usage (Prescriptive linguistics) Applied linguistics

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166302

 We propose a novel structural estimation framework in which we train a surrogate of an economic model with deep neural networks. Our methodology alleviates the curse of dimensionality and speeds up the evaluation and parameter estimation by orders of magnitudes, which significantly enhances one's ability to conduct analyses that require frequent parameter re-estimation. As an empirical application, we compare two popular option pricing models (the Heston and the Bates model with double-exponential jumps) against a non-parametric random forest model. We document that: a) the Bates model produces better out-of-sample pricing on average, but both structural models fail to outperform random forest for large areas of the volatility surface
  b) random forest is more competitive at short horizons (e.g., 1-day), for short-dated options (with less than 7 days to maturity), and on days with poor liquidity
  c) both structural models outperform random forest in out-of-sample delta hedging
  d) the Heston model's relative performance has deteriorated significantly after the 2008 financial crisis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH