Optimal Transport of Information

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Anna Cieslak, Semyon Malamud, Andreas Schrimpf

Ngôn ngữ: eng

Ký hiệu phân loại: 025.525 Selective dissemination of information (SDI)

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166328

We study the general problem of Bayesian persuasion (optimal information design) with continuous actions and continuous state space in arbitrary dimensions. First, we show that with a finite signal space, the optimal information design is always given by a partition. Second, we take the limit of an infinite signal space and characterize the solution in terms of a Monge-Kantorovich optimal transport problem with an endogenous information transport cost. We use our novel approach to: 1. Derive necessary and sufficient conditions for optimality based on Bregman divergences for non-convex functions. 2. Compute exact bounds for the Hausdorff dimension of the support of an optimal policy. 3. Derive a non-linear, second-order partial differential equation whose solutions correspond to regular optimal policies. We illustrate the power of our approach by providing explicit solutions to several non-linear, multidimensional Bayesian persuasion problems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH