Quasi-maximum likelihood estimation of break point in high-dimensional factor models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jushan Bai, Jiangtao Duan, Xu Han

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166366

This paper estimates the break point for large-dimensional factor models with a single structural break in factor loadings at a common unknown date. First, we propose a quasi-maximum likelihood (QML) estimator of the change point based on the second moments of factors, which are estimated by principal component analysis. We show that the QML estimator performs consistently when the covariance matrix of the pre- or post-break factor loading, or both, is singular. When the loading matrix undergoes a rotational type of change while the number of factors remains constant over time, the QML estimator incurs a stochastically bounded estimation error. In this case, we establish an asymptotic distribution of the QML estimator. The simulation results validate the feasibility of this estimator when used in finite samples. In addition, we demonstrate empirical applications of the proposed method by applying it to estimate the break points in a U.S. macroeconomic dataset and a stock return dataset.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH