Algorithmic subsampling under multiway clustering

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Harold D Chiang, Jiatong Li, Yuya Sasaki

Ngôn ngữ: eng

Ký hiệu phân loại: 003 Systems

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166406

This paper proposes a novel method of algorithmic subsampling (data sketching) for multiway cluster dependent data. We establish a new uniform weak law of large numbers and a new central limit theorem for the multiway algorithmic subsample means. Consequently, we discover an additional advantage of the algorithmic subsampling that it allows for robustness against potential degeneracy, and even non-Gaussian degeneracy, of the asymptotic distribution under multiway clustering. Simulation studies support this novel result, and demonstrate that inference with the algorithmic subsampling entails more accuracy than that without the algorithmic subsampling. Applying these basic asymptotic theories, we derive the consistency and the asymptotic normality for the multiway algorithmic subsampling generalized method of moments estimator and for the multiway algorithmic subsampling M-estimator. We illustrate an application to scanner data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH