Approximate Bayesian inference and forecasting in huge-dimensional multi-country VARs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Martin Feldkircher, Florian Huber, Gary Koop, Michael Pfarrhofer

Ngôn ngữ: eng

Ký hiệu phân loại: 338.544 General production forecasting and forecasts

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 166480

 Comment: JEL: C11, C33, C55, E37
  Keywords: Multi-country models, macroeconomic forecasting, vector autoregression, spilloversPanel Vector Autoregressions (PVARs) are a popular tool for analyzing multi-country datasets. However, the number of estimated parameters can be enormous, leading to computational and statistical issues. In this paper, we develop fast Bayesian methods for estimating PVARs using integrated rotated Gaussian approximations. We exploit the fact that domestic information is often more important than international information and group the coefficients accordingly. Fast approximations are used to estimate the latter while the former are estimated with precision using Markov chain Monte Carlo techniques. We illustrate, using a huge model of the world economy, that it produces competitive forecasts quickly.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH