Causal inference with misspecified exposure mappings: separating definitions and assumptions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Fredrik Sävje

Ngôn ngữ: eng

Ký hiệu phân loại: 393.4 Exposure

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166505

Exposure mappings facilitate investigations of complex causal effects when units interact in experiments. Current methods require experimenters to use the same exposure mappings both to define the effect of interest and to impose assumptions on the interference structure. However, the two roles rarely coincide in practice, and experimenters are forced to make the often questionable assumption that their exposures are correctly specified. This paper argues that the two roles exposure mappings currently serve can, and typically should, be separated, so that exposures are used to define effects without necessarily assuming that they are capturing the complete causal structure in the experiment. The paper shows that this approach is practically viable by providing conditions under which exposure effects can be precisely estimated when the exposures are misspecified. Some important questions remain open.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH