Mixture composite regression models with multi-type feature selection

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tsz Chai Fung, George Tzougas, Mario Wuthrich

Ngôn ngữ: eng

Ký hiệu phân loại: 702.81 Mixed-media and composites

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166514

The aim of this paper is to present a mixture composite regression model for claim severity modelling. Claim severity modelling poses several challenges such as multimodality, heavy-tailedness and systematic effects in data. We tackle this modelling problem by studying a mixture composite regression model for simultaneous modeling of attritional and large claims, and for considering systematic effects in both the mixture components as well as the mixing probabilities. For model fitting, we present a group-fused regularization approach that allows us for selecting the explanatory variables which significantly impact the mixing probabilities and the different mixture components, respectively. We develop an asymptotic theory for this regularized estimation approach, and fitting is performed using a novel Generalized Expectation-Maximization algorithm. We exemplify our approach on real motor insurance data set.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH