Identification and Estimation in Many-to-one Two-sided Matching without Transfers

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: YingHua He, Shruti Sinha, Xiaoting Sun

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166678

In a setting of many-to-one two-sided matching with non-transferable utilities, e.g., college admissions, we study conditions under which preferences of both sides are identified with data on one single market. Regardless of whether the market is centralized or decentralized, assuming that the observed matching is stable, we show nonparametric identification of preferences of both sides under certain exclusion restrictions. To take our results to the data, we use Monte Carlo simulations to evaluate different estimators, including the ones that are directly constructed from the identification. We find that a parametric Bayesian approach with a Gibbs sampler works well in realistically sized problems. Finally, we illustrate our methodology in decentralized admissions to public and private schools in Chile and conduct a counterfactual analysis of an affirmative action policy.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH