Selecting Penalty Parameters of High-Dimensional M-Estimators using Bootstrapping after Cross-Validation

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Denis Chetverikov, Jesper Riis-Vestergaard Sørensen

Ngôn ngữ: eng

Ký hiệu phân loại: 003.78 Distributed-parameter systems

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 166715

Comment: 164 pages, 14 figuresWe develop a new method for selecting the penalty parameter for $\ell_{1}$-penalized M-estimators in high dimensions, which we refer to as bootstrapping after cross-validation. We derive rates of convergence for the corresponding $\ell_1$-penalized M-estimator and also for the post-$\ell_1$-penalized M-estimator, which refits the non-zero entries of the former estimator without penalty in the criterion function. We demonstrate via simulations that our methods are not dominated by cross-validation in terms of estimation errors and can outperform cross-validation in terms of inference. As an empirical illustration, we revisit Fryer Jr (2019), who investigated racial differences in police use of force, and confirm his findings.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH