Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tobias Fissler, Yannick Hoga

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166795

 Comment: 28 pages + 25 Appendix, 9 figures Structure improved
  minor additions and correctionsSystemic risk measures such as CoVaR, CoES and MES are widely-used in finance, macroeconomics and by regulatory bodies. Despite their importance, we show that they fail to be elicitable and identifiable. This renders forecast comparison and validation, commonly summarised as `backtesting', impossible. The novel notion of \emph{multi-objective elicitability} solves this problem. Specifically, we propose Diebold--Mariano type tests utilising two-dimensional scores equipped with the lexicographic order. We illustrate the test decisions by an easy-to-apply traffic-light approach. We apply our traffic-light approach to DAX~30 and S\&P~500 returns, and infer some recommendations for regulators.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH