Loss-Based Variational Bayes Prediction

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David T Frazier, Bonsoo Koo, Ruben Loaiza-Maya, Gael M Martin

Ngôn ngữ: eng

Ký hiệu phân loại: 614.472 Forensic medicine; incidence of injuries, wounds, disease; public preventive medicine

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166845

We propose a new approach to Bayesian prediction that caters for models with a large number of parameters and is robust to model misspecification. Given a class of high-dimensional (but parametric) predictive models, this new approach constructs a posterior predictive using a variational approximation to a generalized posterior that is directly focused on predictive accuracy. The theoretical behavior of the new prediction approach is analyzed and a form of optimality demonstrated. Applications to both simulated and empirical data using high-dimensional Bayesian neural network and autoregressive mixture models demonstrate that the approach provides more accurate results than various alternatives, including misspecified likelihood-based predictions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH