Detecting bid-rigging coalitions in different countries and auction formats

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David Imhof, Hannes Wallimann

Ngôn ngữ: eng

Ký hiệu phân loại: 707.45 Education, research, related topics of fine and decorative arts

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166876

We propose an original application of screening methods using machine learning to detect collusive groups of firms in procurement auctions. As a methodical innovation, we calculate coalition-based screens by forming coalitions of bidders in tenders to flag bid-rigging cartels. Using Swiss, Japanese and Italian procurement data, we investigate the effectiveness of our method in different countries and auction settings, in our cases first-price sealed-bid and mean-price sealed-bid auctions. We correctly classify 90\% of the collusive and competitive coalitions when applying four machine learning algorithms: lasso, support vector machine, random forest, and super learner ensemble method. Finally, we find that coalition-based screens for the variance and the uniformity of bids are in all the cases the most important predictors according the random forest.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH