A nonparametric instrumental approach to endogeneity in competing risks models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jad Beyhum, Jean-Pierre Florens, Ingrid Van Keilegom

Ngôn ngữ: eng

Ký hiệu phân loại: 001.43 Historical, descriptive, experimental methods

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166888

This paper discusses endogenous treatment models with duration outcomes, competing risks and random right censoring. The endogeneity issue is solved using a discrete instrumental variable. We show that the competing risks model generates a non-parametric quantile instrumental regression problem. The cause-specific cumulative incidence, the cause-specific hazard and the subdistribution hazard can be recovered from the regression function. A distinguishing feature of the model is that censoring and competing risks prevent identification at some quantiles. We characterize the set of quantiles for which exact identification is possible and give partial identification results for other quantiles. We outline an estimation procedure and discuss its properties. The finite sample performance of the estimator is evaluated through simulations. We apply the proposed method to the Health Insurance Plan of Greater New York experiment.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH