Machine Collaboration

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yang Feng, Qingfeng Liu

Ngôn ngữ: eng

Ký hiệu phân loại: 361.4 Group work

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 166910

We propose a new ensemble framework for supervised learning, called machine collaboration (MaC), using a collection of base machines for prediction tasks. Unlike bagging/stacking (a parallel & independent framework) and boosting (a sequential & top-down framework), MaC is a type of circular & interactive learning framework. The circular & interactive feature helps the base machines to transfer information circularly and update their structures and parameters accordingly. The theoretical result on the risk bound of the estimator from MaC reveals that the circular & interactive feature can help MaC reduce risk via a parsimonious ensemble. We conduct extensive experiments on MaC using both simulated data and 119 benchmark real datasets. The results demonstrate that in most cases, MaC performs significantly better than several other state-of-the-art methods, including classification and regression trees, neural networks, stacking, and boosting.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH